167. Unimolecular Gas-Phase Oxidation of Terminal Hydroxy Groups in $[FeO(CH_2)_nOH]^+$ Complexes (n = 2-8). A Case for O–H Bond Activation by Late Transition-Metal Ions

Preliminary Communication

by Tilmann Prüsse and Helmut Schwarz*

Institut für Organische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12

(14.X.91)

In contrast to Fe⁺/diol complexes, gas-phase dehydrogenation of the corresponding Fe^{II} alkoxides, [FeO(CH₂)_nCH₂OH]⁺, is a highly specific process in the course of which oxidation of the terminal OH group takes place. Based on labeling studies, this is the exclusive mechanism for n = 2 and 3 (*Scheme*: path 0); for higher homologues, as for example [FeO(CH₂)₇CH₂OH]⁺, the labeling data demonstrate that an additional mechanism is operative, involving the dehydrogenation of internal positions of the alkyl chain (path 0). The Fe⁺-mediated oxidation $-CH_2OH \rightarrow -CHO + H_2$ constitutes one of the rare examples of O–H bond activation by late cationic transition-metal ions.

If mixtures of aliphatic diols, $HO(CH_2)_nOH$ (n = 2-8), and $Fe(CO)_5$ are bombarded with 100-eV electrons in the chemical ionization source of a four-sector BEBE mass spectrometer¹), in addition to [Fe(ROH)]⁺ complexes, we observe intense signals corresponding to Fe^{II} alkoxides, [Fe(OR)]⁺ [2]; labeling experiments demonstrate [2] that the H-atom lost specifically originates from the OH group of the diol²). If the [Fe(OR)]⁺ ions are mass-selected by B(1)E(1) and their unimolecular reactions, occurring in the field-free region between E(1) and B(2), recorded by means of B(2), one obtains metastable ion (MI) mass spectra (*Table 1*) which are distinctly different from those of the corresponding [Fe(ROH)]⁺ complexes [2]. For the latter, it was observed that dehydrogenation is absent for substrates HO(CH₂),OH with n = 2-5, and detailed labeling studies [2] [4] revealed for n > 5 that molecular hydrogen originates from the *central part* of the CH₂ chain separating the two OH groups. For example, in the Fe⁺-mediated dehydrogenation of $HO(CH_2)_8OH$ ca. 80% of H₂ is provided by C(4)/C(5) and the remaining 20% by C(3)/C(4) and its equivalent C(5)/C(6) positions. This high selectivity reflects the propensity of Fe^+ to intramolecularly activate C–H bonds by 'remote functionalization' [5] favoring five- and six-membered metallacyclic intermediates for [Fe(ROH)]⁺ complexes [2] [4] [6]. Consequently, for shorter alcohols, this mechanism is no longer favored, and other processes, like H_2O loss, dominate [2]. Obviously, the abundant dehydrogenation reported in *Table 1* for all Fe^{II} alkoxides, $[FeO(CH_2),OH]^+$ (n = 2-8), immediately suggests that another mechanism is operative.

¹) For a detailed description and operation of the machine, see [1].

²) For the unique, bimolecular chemistry of Fe^{II} alkoxides with ketones, a gas-phase analogue of the well-known Meerwein-Ponndorf-Verley-Oppenauer reaction, see [3].

<i>n</i> in Precursor $HO(CH_2)_nOH$	Neutral (Am) eliminated									
	$H_2(2)$	H ₂ O (18)	C ₂ H ₄ (28)	CH ₂ O (30)	C ₃ H ₆ (42)					
2	56	44								
3	61	26	13							
4	35	43		6	16					
5	69	15		16						
6	59	31	5	5						
7	75	14	8	3						
8	67	14		5	4					

Table 1. Metastable-Ion (MI) Mass Spectra of $[FeO(CH_2)_nOH]^+$ Complexes^a)

Table 2. Metastable-Ion (MI) Mass Spectra of Fe⁺ Alkoxide Complexes of Diol Isotopomers^a)

Precursor	Δm											
	2	3	4	18	19	20	28	30	32	42	44	46
HOCD ₂ CH ₂ CD ₂ OH		15		60	17	2		6			<u> </u>	
$DO(CH_2)_3OD^b)$		10		60	17		13					
HOCD ₂ (CH ₂) ₂ CD ₂ OH		16		46	15	4			5		14	
HOCH ₂ (CD ₂) ₂ CH ₂ OH	15			58	16	2		3				6
HO(CH ₂) ₃ (CD ₂) ₂ (CH ₂) ₃ OH	42	21	14	14				5		4		

^a) See *Footnote a* of *Table 1*.

b) For this precursor, the [FeO(CH₂)₃OD]⁺ complex was mass-selected and its MI spectrum recorded.

This conjecture is indeed corroborated by the data of some isotopomers of several diols HO(CH₂)_nOH (*Table 2*). For n = 3 and 4, the data reveal a highly site-specific process in the course of which the OH group is oxidized to a C=O function. In view of the previously demonstrated [4] propensity of Fe/diol complexes to form chelates, we suggest that the terminal aldehyde group formed in the dehydrogenation of $[FeO(CH_2),OH]^+$ undergoes intramolecular complexation of the metal ion (*Scheme*; path (a)). We note that the reaction $1 \rightarrow 2$ can also be viewed as a further example of the rare case of O-H bond activation by *late*, cationic transition-metal ions [7]. We presume that reaction $\langle a \rangle$, shown in the Scheme, is also operative for the remaining homologues; however, with increasing chain length, in addition to oxidizing the OH group $1 \rightarrow 2$, another mode of dehvdrogenation becomes possible. This is evidenced by the data for $HO(CH_2)_1(CD_2)_2(CH_2)_3OH$. Here, in addition to H_2 loss, presumably via path (a), we observe the elimination of HD and D_2 . This clearly points to an activation of internal C-H/C-D bonds (path b), as was observed earlier for the [Fe/HO(CH₂)₈OH]⁺ complex [4]. However, while the ratio of HD vs. D_2 loss corresponds to 1.5 for the $[FeO(CH_2)_3(CD_2)_2(CH_2)_3OH]^+$ system (Table 2), for the analogous [Fe/ $HO(CH_2)_3(CD_2)_2(CH_2)_3OH]^+$ complex a ratio of 0.61 was observed [4]. Possibly, this is due to different directionalities operative in the 'unsymmetric' Fe^{II} alkoxides vs. the 'symmetric' Fe¹ chelates.

The data in *Table 2* further reveal highly specific reactions for the losses of ethene and propene as well as formaldehyde. The olefin detachment involves C(1)-C(2) (for ethene) and C(1)-C(2)-C(3) (for propene), and formaldehyde involves an intact CH₂O group.

However, on principal grounds the present data do not permit to distinguish the 'internal' $FeO(CH_2)_n$ moiety from the 'terminal' $(CH_2)_nOH$ group. In addition, the mechanistic details for the dehydration of Fe^{II} alkoxides remain unknown; as indicated by the labeling data, extensive exchange processes seem to precede the elimination.

Financial support of our work by the Volkswagen-Stiftung, Deutsche Forschungsgemeinschaft, and Fonds der Chemischen Industrie is appreciated.

REFERENCES

- a) R. Srinivas, D. Sülzle, T. Weiske, H. Schwarz, Int. J. Mass Spectrom. Ion Processes 1991, 107, 369; b) R. Srinivas, D. Sülzle, W. Koch, C. H. DePuy, H. Schwarz, J. Am. Chem. Soc. 1991, 113, 5970.
- [2] T. Prüsse, Ph. D. Thesis, Technische Universität Berlin, D83, 1991.
- [3] D. Schröder, H. Schwarz, Angew. Chem. Int. Ed. 1990, 29, 910.
- [4] T. Prüsse, A. Fiedler, H. Schwarz, Helv. Chim. Acta 1991, 74, 1027.
- [5] Reviews see: a) H. Schwarz, Acc. Chem. Res. 1989, 22, 282; b) K. Eller, H. Schwarz, Chimia 1989, 43, 371;
 c) K. Eller, S. Karrass, H. Schwarz, Ber. Bunsenges. Phys. Chem. 1990, 94, 1201; d) K. Eller, H. Schwarz, Chem. Rev. 1991, 91, 1121.
- [6] a) T. Prüsse, H. Schwarz, Organometallics 1989, 8, 2856; b) T. Prüsse, A. Fiedler, H. Schwarz, J. Am. Chem. Soc. 1991, 113, 8335.
- [7] O. Blum, D. Stöckigt, D. Schröder, H. Schwarz, submitted to J. Am. Chem. Soc., and ref. cit. therein.