167. Unimolecular Gas-Phase Oxidation of Terminal Hydroxy Groups in $[FeO(CH_2), OH]^+$ Complexes $(n = 2-8)$. A Case for O-H Bond Activation **by Late Transition-Metal Ions**

Preliminary Communication

by **Tilmann Priisse** and **Helmut Schwarz***

Institut für Organische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12

$(14. X. 91)$

In contrast to Fe⁺/diol complexes, gas-phase dehydrogenation of the corresponding Fe^{II} alkoxides, $[FeO(CH₂)_nCH₂OH]⁺$, is a highly specific process in the course of which oxidation of the terminal OH group takes place. Based on labeling studies, this is the exclusive mechanism for $n = 2$ and 3 *(Scheme: path @)*; for higher homologues, as for example $[FeO(CH_2)_7CH_2OH]^+$, the labeling data demonstrate that an additional mechanism is operative, involving the dehydrogenation of internal positions of the alkyl chain (path (b)). The Fe⁺-mediated oxidation $-CH_2OH \rightarrow -CHO + H_2$ constitutes one of the rare examples of O-H bond activation by late cationic transition-metal ions.

If mixtures of aliphatic diols, $HO(CH_2)_nOH$ ($n = 2-8$), and $Fe(CO)$, are bombarded with 100-eV electrons in the chemical ionization source of a four-sector BEBE mass spectrometer'), in addition to $[Fe(ROH)]^+$ complexes, we observe intense signals corresponding to Fe^{II} alkoxides, $[Fe(OR)]^+$ [2]; labeling experiments demonstrate [2] that the H-atom lost specifically originates from the OH group of the diol²). If the $[Fe(OR)]^+$ ions are mass-selected by $B(1)E(1)$ and their unimolecular reactions, occurring in the field-free region between $E(1)$ and $B(2)$, recorded by means of $B(2)$, one obtains metastable ion (MI) mass spectra *(Table I)* which are distinctly different from those of the corresponding $[Fe(ROH)]^+$ complexes [2]. For the latter, it was observed that dehydrogenation is absent for substrates HO(CH₂), OH with $n = 2-5$, and detailed labeling studies [2] [4] revealed for $n > 5$ that molecular hydrogen originates from the *central part* of the CH₂ chain separating the two OH groups. For example, in the Fe⁺-mediated dehydrogenation of HO(CH₂)₈OH *ca.* 80% of H₂ is provided by C(4)/C(5) and the remaining 20% by $C(3)/C(4)$ and its equivalent $C(5)/C(6)$ positions. This high selectivity reflects the propensity of $Fe⁺$ to intramolecularly activate C-H bonds by 'remote functionalization' [5] favoring five- and six-membered metallacyclic intermediates for $[Fe(ROH)]^+$ complexes [2] [4] [6]. Consequently, for shorter alcohols, this mechanism is no longer favored, and other processes, like H,O loss, dominate [2]. Obviously, the abundant dehydrogenation reported in *Table 1* for *all* Fe^{II} alkoxides, $[FeO(CH_2),OH]^+$ ($n = 2-8$), immediately suggests that another mechanism is operative.

^{&#}x27;) For a detailed description and operation of the machine, see [l].

^{&#}x27;) For the unique, bimolecular chemistry of Fe^{II} alkoxides with ketones, a gas-phase analogue of the well-known *Meerwein-Ponndorf Verley-Oppenauer* reaction, see [3].

n in Precursor HO(CH ₂) _n OH	Neutral $(4m)$ eliminated									
	$H_2(2)$	H ₂ O(18)	$C_2H_4(28)$	CH ₂ O (30)	$C_3H_6(42)$					
	56	44								
	61	26	13							
4	35	43			16					
	69	15		16						
6	59	31								
	75	14								
8	67	14								

Table 1. *Metastable-Ion (MI) Mass Spectra of* $[FeO(CH_2)_nOH]^+$ *Complexes^a)*

Table 2. *Metastable-Ion (MI) Muss Spectra of Fe+ Alkoxide Complexes of Diol Isotopomers")*

Precursor	Δm											
		3	4	18	19	20	28	30	32	42	44	46
HOCD ₂ CH ₂ CD ₂ OH		15		60	17	2		6				
$DO(CH_2)$ ₃ OD^b)		10		60	17		13					
$HOCD2(CH2)2CD2OH$		16		46	15	4					14	
$HOCH2(CD2)2CH2OH$	15			58	16	2						
$HO(CH_2)_3(CD_2)_2(CH_2)_3OH$	42	21	14	14						4		

 $a₁$ See *Footnote a* of *Table 1.*

b, For this precursor, the $[FeO(CH_2), OD]^+$ complex was mass-selected and its MI spectrum recorded.

This conjecture is indeed corroborated by the data of some isotopomers of several diols $HO(CH_2)$, OH *(Table 2)*. For $n = 3$ and 4, the data reveal a highly site-specific process in the course of which the OH group is oxidized to a C=O function. In view of the previously demonstrated [4] propensity of Fe/diol complexes to form chelates, we suggest that the terminal aldehyde group formed in the dehydrogenation of $[FeO(CH_2),OH]^+$ undergoes intramolecular complexation of the metal ion *(Scheme;* path *0).* We note that the reaction $1 \rightarrow 2$ can also be viewed as a further example of the rare case of O-H bond activation by *late,* cationic transition-metal ions [7]. We presume that reaction *0,* shown in the *Scheme,* is also operative for the remaining homologues; however, with increasing chain length, in addition to oxidizing the OH group $1 \rightarrow 2$, another mode of dehydrogenation becomes possible. This is evidenced by the data for HO(CH,),(CD,),(CH,),OH. Here, in addition to H, loss, presumably *via* path *0,* we observe the elimination of HD and D,. This clearly points to an activation of internal C-H/C-D bonds (path \circledcirc), as was observed earlier for the [Fe/HO(CH₂)₈OH]⁺ complex 141. However, while the ratio of HD *us.* D, loss corresponds to 1.5 for the $[FeO(CH_2),(CD_2),(CH_3,OH]^+$ system *(Table 2)*, for the analogous $[Fe/H]$ $HO(CH₂)(CD₂)(CH₃)$, OH ⁺ complex a ratio of 0.61 was observed [4]. Possibly, this is due to different directionalities operative in the 'unsymmetric' Fe" alkoxides *us.* the 'symmetric' Fe' chelates.

The data in *Table* 2 further reveal highly specific reactions for the losses of ethene and propene as well as formaldehyde. The olefin detachment involves $C(1)-C(2)$ (for ethene) and $C(1)$ -C(2)-C(3) (for propene), and formaldehyde involves an intact CH₂O group.

However, on principal grounds the present data do not permit to distinguish the 'internal' $FeO(CH₂)$, moiety from the 'terminal' (CH₂), OH group. In addition, the mechanistic details for the dehydration of Fe^{II} alkoxides remain unknown; as indicated by the labeling data, extensive exchange processes seem to precede the elimination.

Financial support of our work by the *Volkswagen-Stiftung, Deutsche Forschungsgemeinschaft,* and *Fonds der Chemisehen Industrie* is appreciated.

REFERENCES

- [I] a) R. Srinivas, D. Siilzle, T. Weiske, H. Schwarz, *Int. J. Mass Spectrom. Ion Processes 1991, 107,* **369;** b) **R.** Srinivas, D. **Siilzle,** W. Koch, C. H. DePuy, H. Schwarz, *J. Am. Chem. SOC. 1991,113,* **5970.**
- [2] T. Priisse, Ph.D. Thesis, Technische Universitit Berlin, **D83, 1991.**
- **[3]** D. Schroder, **H.** Schwarz, *Angew. Chem. Int. Ed. 1990,2Y,* **910.**
- **[4] T.** Prusse, **A.** Fiedler, H. Schwarz, *Helu. Chim. Acta 1991, 74,* **1027.**
- **[5]** Revicws **see:** a) H. Schwarz, *Arc. Chem. Res. 1989,22,* **282; b)** K. Eller, H. Schwarz, *Chimia 1989, 43,* **371; c) K.** Eller, **S.** KarrdSS, H. Schwarz, *Ber. Bunsenges. Phys. Chrm. 1990, 94,* **1201;** d) K. Eller, H. Schwarz, *Chem. Rev.* **1991**, 91, 1121.
- a) T. Priisse, H. Schwarz, *Organometallics 1989,8,* **2856;** b) T. Prusse, **A.** Fiedler, H. Schwarz, *J. Am. Chem.* **[6]** Soc. *1991,113,* **8335.**
- **0.** Blum, D. Stockigt, D. Schroder, H. Schwarz, submitted to *J. Am. Chem. SOC.,* and ref. cit. therein. **[7]**